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Can machine learning crack the code in the nose? Over the past decade,

studies tried to solve the relation between chemical structure and sensory

quality with Big Data. These studies advanced computational models of the

olfactory stimulus, utilizing artificial intelligence to mine for clear correlations

between chemistry and psychophysics. Computational perspectives promised

to solve the mystery of olfaction with more data and better data processing

tools. None of them succeeded, however, and it matters as to why this is the

case. This article argues that we should be deeply skeptical about the trend to

black-box the sensory system’s biology in our theories of perception. Instead,

we need to ground both stimulus models and psychophysical data on real

causal-mechanistic explanations of the olfactory system. The central question

is: Would knowledge of biology lead to a better understanding of the stimulus

in odor coding than the one utilized in current machine learning models? That

is indeed the case. Recent studies about receptor behavior have revealed that

the olfactory system operates by principles not captured in current stimulus-

response models. This may require a fundamental revision of computational

approaches to olfaction, including its psychological effects. To analyze the

different research programs in olfaction, we draw on Lloyd’s “Logic of

Research Questions,” a philosophical framework which assists scientists in

explicating the reasoning, conceptual commitments, and problems of a

modeling approach in question.

KEYWORDS

philosophy of science, neurobiology, mechanisms, stimulus response, structure odor
relationship, medicinal chemistry, logic of research questions, receptor modeling

The scientific challenge: Decoding the nose

How odor quality is encoded in molecules remains an enigma in modern
neuroscience. In 1991, when Buck and Axel (1991) discovered the odor receptor genes
belonging to the superfamily of GPCRs (G-protein coupled receptors), hopes were raised
that this molecular riddle could be solved soon. Yet, the opposite has been the case.
The reason for this absence of a conclusive scientific classification and prediction of
sensory qualities in chemical compounds is not for a lack of experimental progress.
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Instead, 30 years later, and the olfactory pathway has revealed a
complexity that added several more conditions and layers to its
information processing. The number of possible combinations
by which chemical features are encoded by the olfactory
receptor cells are mind-boggling (Figure 1), explaining why
“[t]his stimulus-percept problem has been difficult to solve in
olfaction,” especially “because odors do not vary continuously
in stimulus space,” while “the size and dimensionality of
olfactory perceptual space is unknown” (Keller et al., 2017;
added emphasis). This suggest that there might not be a clear-
cut correspondence in properties and structure between models
of the physical stimulus and perceptual space.

Advances in new computational tools are often portrayed as
a promising avenue through this complex molecular forest en
route to a comprehensive stimulus-response model. Models of
the chemical stimulus in olfaction serve a critical explanatory
function: “Understanding the relationship between a stimulus
and how it is perceived reveals fundamental principles about
the mechanisms of sensory perception” (Keller and Vosshall,
2016). Knowing what kinds of molecular features are causally
responsible for specific perceptual effects may facilitate better
insight into the biological processes that bring about these
effects, or so it is assumed. Machine learning models in olfaction
hold the promise of obtaining such generalizable structure-odor
rules that could reduce the vast chemical complexity of the
stimulus. While interest in these models is increasing, we point
out a central oversight in their current design and application.

This article discusses the danger of the hidden assumptions
present in current applications of machine learning (ML in
the following) in olfaction. Our analysis extends previous
critiques of ML-models in biological systems that cautioned of
methodological pitfalls, including incomplete data and small
datasets or false positives, opacity in algorithm design, and a lack
of empirical and contextual grounding (Johnson, 2008; Coveney
et al., 2016; Ratti and López-Rubio, 2018; London, 2019; Ratti
and Graves, 2022). The scientifically important issue raised with
this analysis is that “[these pitfalls do] not explain how we arrive
at the wrong model, just how we accept the wrong model”
(Johnson, 2008, 25, added emphasis).

Our article makes the following claim: current
computational approaches to modeling the olfactory stimulus
that are based on the principles of analytic chemistry target
the wrong causal features of the stimulus. These approaches
provide mistaken answers to research questions investigating
the molecular features as the cause of odor perception.
Specifically, they ask the wrong research questions, given
twenty-first century discoveries about the neurobiology of
smell, and therefore end up with the wrong answers. Instead,
we argue that stimulus models ought to be based in biology,
particularly in receptor responses to the chemical stimulus of
smell. We demonstrate that stimulus models based in chemistry
and biology are not co-extensive, meaning they need not
identify the same chemical features as causally responsible for
olfactory signaling and odor quality.

Against our claim stands a key conviction held by many ML-
proponents, who characterize computational tools as theory-
neutral and share the assumption that successful algorithms
identify the causally responsible features—independently of
empirical insights into receptor behavior and the biology of
the system. This view is visible in big money projects such
as Google AI which joined the race to crack the code in the
nose. A member of the Google AI team, Wiltschko (2019;
added emphasis), confidently proclaimed: “Based on analogous
advances in deep learning for sight and sound, it should be
possible to directly predict the end sensory result of an input
molecule, even without knowing the intricate details of all the
systems involved.” This view is shockingly uninformed, starting
with the assumption that olfaction works analogously to vision
and audition, which is simply not the case (Barwich, 2019,
2020a). A critical difference is the vast genetic diversity of
the olfactory system compared to vision and audition. The
challenge of modeling the stimulus space in olfaction thus
goes beyond chemical complexity. It concerns high stimulus-
response variation based on a genetically highly heterogeneous
sensory system, resulting in divergent perceptual responses to
physico-chemical information (Barwich, 2020a, forthcoming).
Thus, our paper centers on the second premise expressed by
Wiltschko and others: that one can eschew insights from the
biology of the system one wants to model in favor of an
algorithm that magically extracts just the right features.1

This is both logically unjustified and empirically wrong. We
support our claim by extracting the logic and framing of, and
then contrasting, the experimental designs and results of the
two most successful contenders for each modeling approach.
On the one hand, we look at Keller et al.’s (2017) Science
paper that used ML-algorithms to predict odor quality from
the chemical structure of odorants. On the other hand, we
analyze Poivet et al.’s (2016, 2018) wet-lab studies examining
the responses of odor receptors to selected odorants to
identify which chemical features of these odorants are causally
responsible. For comparison of these two approaches, we draw
on Lloyd’s (2015) “Logic of Research Questions” (LRQ), a
philosophical framework which assists scientists in explicating
the reasoning, conceptual commitments, and problems of a
modeling approach in question.

Research programs are compared in terms of the logic of
their implicit research questions including their possible and
responsive answers, and the standards of evidence required
for these answers to be met. Our analysis using LRQ presents
two heavy blows to optimism about current ML-approaches
in olfaction. First, stimulus models based on receptor biology
yield crucial differences in their selection and hierarchy of
causally responsible molecular features compared to stimulus

1 For related criticisms and arguments concerning the task-specificity
and theory-ladenness of big data and computational techniques,
including deep learning, see Lloyd et al. (forthcoming) for climate
modeling and Dupre (2021) for linguistics.
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FIGURE 1

Illustration of the “big data” challenge in modeling olfaction [Graph, right, by Bair (2015)]. Humans feature about 400 receptor genes. Each
receptor interacts combinatorically with multiple physico-chemical properties of multiple odorants (Malnic et al., 1999) [The precise number of
possible stimuli detected by the olfactory system is unknown and debated (Meister, 2015); while it is considered high (Ohloff et al., 2012)].
Additionally, there are several thousand possible parameters involved in odorant-receptor binding, resulting in an explosion of possible
combinations for stimulus-receptor interactions.

models based in traditional analytic chemistry. Second, studies
in receptor biology revealed molecular features as critical to
odor detection that were not identified in previous ML-models.
Consequently, this article emphasizes, for ML-techniques to
truly advance understanding of olfaction and its stimulus,
they must be modeled after the characteristics of the system
it is consulted to assist in modeling, instead of black-
boxing its causality.

We proceed as follows. Section “Deep nose and the logic
of research questions: theory in machine learning studies in
olfaction” looks at the current promises of ML-models in
olfaction and then introduces the Logic of Research Questions, a
philosophical framework that helps to carve out the conceptual
differences between chemistry-based and biology-based models
of the stimulus. Section “Analysis: chemistry-based versus
receptor-response models” evaluates the available empirical
evidence of the leading studies for each approach in support
of our analysis. Here we will see how receptor-response studies
correct chemistry-based modeling and widen our explanatory
possibilities on odor coding. Section “Conclusion” presents
our conclusions.

Deep nose and the logic of
research questions: Theory in
machine learning studies in
olfaction

Computational techniques are expected by advocates of
the no-theory ML-paradigm to systematically link molecular
features with olfactory quality to arrive at a model matching

the physical stimulus space with perceptual quality space.
Most of these studies (e.g., Koulakov et al., 2011; Kumar
et al., 2015; Kepple and Koulakov, 2017; Gutiérrez et al.,
2018) compare two kinds of datasets: verbal descriptors (e.g.,
“orange,” “garlicky”) and molecular parameters (e.g., benzene
rings, number of carbon atoms, molecular weight, etc.). Despite
an extensive research tradition mining for correlations between
these datasets (Rossiter, 1996; Sell, 2006), to this day, these tools
have not found sufficient success in facilitating generalizable
“structure-odor rules” (SORs) that would allow predicting the
odor of a molecule from its molecular composition. One
explanation for this shortcoming, according to its proponents, is
the quality and composition of the datasets, as “many [of these
studies] relied on psychophysical data from a single 30-year-old
[trade lexicon] that used odorants with limited structural and
perceptual diversity” (Keller et al., 2017).

A ML-study, published in Science and confidently entitled
“Predicting human olfactory perception from chemical features
of odor molecules” (Keller et al., 2017), aimed to correct this flaw
by drawing on a newly collected psychophysical dataset (Keller
and Vosshall, 2016). This study set out to provide a proof of
principle and might be considered the leading-edge work of this
kind today. It received positive attention from science writers
(Yong, 2016) with its declaration that it is “possible to predict the
perceptual qualities of virtually any molecule with an impressive
degree of accuracy to reverse-engineer the smell of a molecule”
(Keller et al., 2017; added emphasis).

We advise caution concerning this conclusion and contend
this claim. But we want to emphasize right up front
that our central point of disagreement is not aimed at
the consultation of novel powerful technologies for solving
older empirical problems, or the auspicious tool of ML as
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such. On the contrary, ML has proven indispensable for
the toolbox of science and even superseded expectations in
some areas of biology, most remarkably in modeling protein
folding (e.g., AlphaFold, Jumper et al., 2021). Experimental
and theoretical breakthroughs throughout the history of
(neuro)science fundamentally hinge on the development and
application of new tools (Churchland, 1995; Gigerenzer and
Goldstein, 1996; Schickore, 2007; Bickle et al., 2021). Rather,
our critique targets the theoretical and empirical adequacy of the
assumptions hidden in the current use of ML-models in olfaction.

The attraction of ML lies in its potential to provide shortcuts
for the evaluation of otherwise complex and impenetrable data
correlations. ML-techniques seem to espouse a theory-neutral
approach, or something close to theory-neutral modeling, in
that they do not directly rely on researchers’ intuitions about
what the data might mean as these tools “merely” mine the data
for salient and systematic correlations hidden by complexity.
Therefore, the true concern for big data advocates is not the
making of inferences from data mining operations per se, but
the quality and size of datasets used.

The case of olfaction proves this optimism misplaced.
Neither is ML theory-neutral nor are its correlations explanatory
by their own merit. What makes data correlations potentially
explanatory is the causal model to which ML-correlations are
applied. Concern about the use of ML-tools in olfaction aligns
with broader criticisms regarding the rise of big data and its
associated techniques:

Not only do these methods invariably require far larger
quantities of data than anticipated by big data aficionados
in order to produce statistically reliable results, but they
can also fail in circumstances beyond the range of the
data used to train them because they are not designed to
model the structural characteristics of the underlying system
(Coveney et al., 2016).

But are the comparatively small public2 datasets in olfactory
psychophysics the reason for a lack of success in current ML-
models of SORs? One may suggest that an AI worth its hype
should be able to solve even a smaller and messy dataset
(especially considering receptor studies yielding highly revealing
results despite using a small number of compounds; see section
“Biology makes scents of chemistry: receptor-response models
of the stimulus”). Thus, we want to focus on the second point
of criticism: if ML-models in olfaction continue to “black-
box” the structural conditions and biological mechanisms of
the underlying system, they inevitably result in contrived and
potentially misleading correlations.

2 The fragrance industry, a > 25-billion-dollar enterprise, has
accumulated large proprietary databases in their research and
development departments involving odorant design and consumer
research. Thus, one may suspect these companies have been conducting
less publicized and equally (un)productive attempts at SORs ML-
modeling.

Current ML in olfaction builds on a research program with
a straightforward question: What are the chemical features
responsible for an odorant’s particular quality? By extension,
this question is asserted to mean: What chemical features of
an odorant allow for predictions about its olfactory quality?
We think this line of inquiry is deceptively straightforward.
Lloyd’s (2015) “Logic of Research Questions” (LRQ) will help
us clarifying why this approach hides a critical premise about
the nature of olfaction that (i) ML-models cannot account for
and (ii) undermine confidence in the empirical adequacy of the
correlations mined by these models.

LRQ is a method to analyze the conceptual constraints that
the specific framing of a research question carries by clarifying
the possible ranges of answers, their evidential hierarchy, and
their contrast with other ways of framing that question. Before
modeling any phenomenon, “[t]he most important feature of
[research] questions is that each question carries with it an
appropriate class of possible answers unique to it, and distinct
from other contrasting classes of answers” (Lloyd, 2015). For
example, Lloyd illustrates, a common question for examining
the causal history and characteristics of a trait in evolutionary
theory is: “What is the function of this trait?” However, this
question (advanced by adaptationists such as Mayr, among
others) is framed in such a way that it already presumes that
the trait under investigation has a function. An alternative way
of asking about the nature of a trait would be: “Does this
trait have a function?” The logical difference between these
two questions is visible in the answers that can be given in
response to these questions, including the possible hierarchy
of answers which might more likely be the case and their
standards of evidence required. A similar analysis can be applied
to ML-models in olfaction. Their current application builds on
a research question with a causal model of the stimulus that has
been questioned by a couple of scientific studies recently.

The research question asked by Keller et al. (2017),
employed also in other ML-studies (e.g., Koulakov et al., 2011;
Kumar et al., 2015; Kepple and Koulakov, 2017), is:

Q1 “Which chemoinformatic features of molecules predict
their sensory (olfactory) attributes?”

Possible and responsive answers to this question are:

A: This specific correlation, which is a feature F1
that can be found in all molecules belonging to the
same odor category.
A: That correlation, which is different from the first
correlation, in that it is a feature that can be found in most
molecules belonging to the same odor category, specifically
those molecules that all also have this other feature F2 {i.e.,
F1 and F2}.
A: This other correlation, which is different from the first
two correlations, in that it is a feature that can be found
in most molecules belonging to the same odor category,
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specifically those molecules that also have this other feature
F2 or F3 or F4 {i.e., forming a class of disjunctive sets such
as: (F1 and F2) or (F1 and F3) or (F1 and F4)}.
(And so on.)

Any answer to this question Q1 will follow this logical
schema. Similar to the study of adaptive traits in evolutionary
theory, we already start with a hidden assumption: that
structural similarities of chemicals with the same odor account
for the causal feature encoding the sensory information in
question. But, as the mantra goes, correlation is not causation.
Plus, this assumption is not theory-free. What is missing to
interpret these similarities as causal requires a model of the
mechanism with which these structural features are picked up by
the system. Only against the backdrop of causal insight into the
conditions of the biological system can we justify interpreting
these correlations (between the microstructure of molecules and
their odors via qualitative descriptions) as causal. Consequently,
what kind of question must we ask if we want to target such
causal features with our model? This points to the study of
receptor-response causality.

Recent work (Poivet et al., 2016, 2018) successfully proposed
an alternative in the study of the molecular basis of odor. This
alternative concerns a causal model of the chemical stimulus in
contrast to ML-studies. Moreover, this alternative relies less on
an analysis of chemoinformatic properties of molecules. Instead,
it centers “the biological responses of olfactory sensory neurons
[to the stimulus]” (Poivet et al., 2018). Compared are not
structural features of chemicals in isolation, but the responses
of the receptors to chemicals, to identify the causally responsive
features these chemicals may share in the living organism.

This alternative question reads:

Q2 “Which chemoinformatic properties are causally
responsible in the detection of odorants by the (biological)
system?”

Possible and responsive answers to this question are:

A: This correlation, which is a feature F1 of molecules of
the same odor category where F1 is present in all receptors
responding to these molecules.
A: That correlation, which is different from the first
correlation, in that it is a feature that can be found in
molecules belonging to the same odor category where
F1 is present in most receptors responding to these
molecules, specifically those molecules where the same
receptors also responded to feature F2 of these molecules
{i.e., R (F1 and F2)}, [where R denotes “biological (or
neuronal) response”].
A: This other correlation, which is different from the first
two correlations, in that it is a feature that can be found in
molecules belonging to the same odor category where F1

is present in most receptors responding to these molecules,
specifically those molecules where the same receptors also
responded to this other feature F2 or F3 or F4 {i.e., forming
a class of disjunctive sets such as: R (F1 and F2) or R (F1
and F3) or R (F1 and F4)}.
(And so on.)

The two research questions, Q1 and Q2, are logically
different. They contain different possibilities as their responsive
answers. Yet, many members of the olfactory community
prioritize chemistry-based over receptor-based models of the
stimulus because they do not consider these two options
empirically different.

For example, Mainland noted on the neglect of receptor-
based models (Barwich, 2020a, 177): “We don’t need to
know what the receptors are doing to figure out how to
map structure to percept. The current [machine learning]
models are basically doing that. (. . .). It can be a black
box.” Keller, lead of the 2017 ML-study, agreed (ibid.):
“You could predict from the physiochemical features what
receptors it activates, and then you could predict from what
receptors are activated what the perceived odor is. You just
cut out that middleman and move over to black box off the
receptors.” Similarly, Gerkin (ibid.), who developed a winning
algorithm in Keller et al.’s (2017) study, responded: “We already
know these receptors. We know about how many receptors
there are. We broadly know how some of them are tuned,
(. . .). But my point is that you can throw all that in the
garbage. You can develop a theory of olfactory perception
without knowing any of that. My hypothesis is that you can
use psychophysics and make measurements to make strong
predictions about the grand perceptual space, what the shape
of the space is, and how stimuli mix in that space.” (Mainland
and Gerkin may have changed their views since, see section
“Biology makes scents of chemistry: receptor-response models
of the stimulus”).

We object to this asserted parity of stimulus models based
in chemistry and in biology. To clarify our reasons, we shall
compare the design and results of Keller et al.’s (2017) ML-study
with the wet-lab receptor research by Poivet et al. (2016, 2018).

Analysis: Chemistry-based versus
receptor-response models

The chemical concept of the olfactory stimulus originated
in the late nineteenth to the mid-twentieth centuries. Key
was the synthesis of coumarin in 1868 and vanillin in 1874
(Ohloff et al., 2012). The synthesis of odor compounds
fueled a significant ontological shift: odors were disconnected
from visible origins, such as plants and animal fats, and
now belonged to invisible molecular causes of chemical
features. How could mere chemical properties give rise
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to the rich mental imagery and perceptual qualities
linked to odors in the human mind? (Barwich, 2020a,
Ch. 1).

Biological notions of sensory perception did not have
much traction until later in the twentieth century. Molecular
biology, genetics, and associated disciplines were just in their
infancy (Kay, 2000). Besides, the general concept of cell-surface
receptors remained highly speculative and even contested until
the 1980s (Barwich and Bschir, 2017). Consequently, chemical
models of the stimulus were used to model hypothetical receptor
sites in olfaction (Amoore, 1970), not vice versa.

The breakthrough transforming olfaction occurred in 1991
with Buck and Axel’s (1991) discovery of the odor receptor genes
and their identification as GPCRs (Firestein, 2005; Firestein
et al., 2014; Barwich, 2020a,b, 2021). However, receptor-research
stalled for almost two decades. This lack of progress was
methodological. Standard techniques such as heterologous
expression (the expression of receptor genes in other tissues
for functional studies) were successfully applied to the olfactory
system only in the last decade (Dey et al., 2011; Mainland et al.,
2015; Matsunami, 2016).

This historical background (Figure 2) explains why
chemical stimulus models dominated olfactory science. While
the biology was long inaccessible to experimental manipulation,
the chemical stimulus was available and controllable. Now that
research on the receptors has considerably advanced, it is time
to revisit the notion of the stimulus and models of its causal
structure accordingly.

Current stimulus modeling follows the same trope:
inference directly from the structure of molecules to sensory
quality. Missing in this set-up is the biological interface of
the system. Biology is consulted chiefly to explain prominent
irregularities in chemically defined SORs (Barwich, 2015, 2018).
But such apparent irregularities need not constitute exceptions.
On the contrary, we contend that “irregularities” constitute
“irregularities” only if we work with the wrong causal model.
Researchers who use chemistry-based stimulus models are
overlooking what they are building into their answers, omitting
what would be truly explanatory: biology.

To clarify how insights from receptor biology inevitably
alters our understanding of stimulus causality, we first
outline how ML is used in olfaction to analyze its logical
foundation and limits.

From molecules to percept: current
computational modeling of stimulus
chemistry

Keller et al.’s (2017) study represents the most successful
ML-account in olfaction to date. Its paradigmatic status resides
less in its results: at 0.3, the correlation was not sufficiently
high. What distinguishes this study from others of its kind is its
experimental design.

Unlike its predecessors, Keller et al. (2017) used a new and
extensive psychophysical dataset by Keller and Vosshall (2016),

FIGURE 2

Historical timeline of selected key events in olfaction research (with focus on receptor biology). For details on the history of olfaction see
Barwich (2020a, Ch. 1; biology-centered); and Ohloff et al. (2012, Ch. 1; chemistry-centered). For details on the history of genetics see Kay
(2000) and GPCRs see Barwich and Bschir (2017). For a review of current research on odor coding mechanisms see Kurian et al. (2021).
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where 55 participants smelled and rated a (perceptually and
structurally) diverse set of 476 molecules with 19 semantic
descriptors (pulled from Dravnieks’ “Atlas”), in addition to
scaling odor intensity and pleasantness. Prior studies of SORs,
such as Koulakov et al. (2011), built exclusively on Dravnieks
(1985) The Atlas of Odor Character Profiles, without consulting
any psychophysical or experimental data. Notably, Dravnieks’
Atlas is a lexical compendium listing and scaling ∼146
verbal descriptors for odorants. This compendium was not
intended to provide structure-odor regularities but designed for
communicative purposes aiding a standardized description of
odors in commercial application contexts. In other words, it is a
trade lexicon, not a psychological research database. Keller and
Vosshall (2016) cautioned about its use, as the “problem with
verbal descriptors is that they are culturally biased. (. . .). Even if
these descriptors were updated to be current and relevant across
different nationalities and cultures, it is unlikely that semantic
descriptors will ever cover the entire olfactory perceptual space.”

Additionally, what catches the eye in Keller et al. (2017) is
its crowd-sourcing basis using DREAM challenges: an online
platform for community-based research.

The study’s setup is straightforward (Figure 3). A public
call with DREAM Challenges asked researchers to develop
an algorithm accounting for two datasets: on the one hand,
participants received a list of chemicals and, on the other hand,
the results of the 2016 psychophysics study. This training set
involved 338 molecules rated by 49 of the 2016 participants.
ML-modelers were given an additional, smaller set (of 69
molecules from the 2016 study) to allow them to adjust their
algorithms before submitting a final version. These submissions
were evaluated with the remaining 69 molecules from the 2016
study.

How predictive were these ML-models, really? Keller
et al. (2017) reported on two winning algorithms, not
published with the paper and submitted by Guan (not an
olfactory researcher) and Gerkin. Their winning algorithms gave
structural predictions for 8 out of 19 descriptors with highly
variable accuracy. Their findings, evaluating individual and
population perception, presented the averaged (of all and only
the best models) and individual model success in correlating
molecular features with sensory attributes. For example, for
individual perception, odor intensity was predicted with success
rates of ∼0.8 (best individual algorithm), 0.5x (average of
best models), and 0.4x (average of all models). Regarding
odor quality, top predictions involved: garlic (best: 0.7; best
average: 0.4x; average: 0.3), sweet (best: 0.6; best average: 0.4x;
average: 0.3), and fruit (best: 0.6; best average: 0.2x; average:
0.2). Toward the lower end were: urinous (best: 0.6; best
average: 0.4x; average: 0.3), wood (best: 0.5x; best average: > 0.1;
average: > 0.1), and acid (best: 0.3x; best average: > 0.1;
average: > 0.1). A comparison with population perception
showed similar results with respect to best and lowest predicted
sensory attributes of odorants.

What were the success criteria? Algorithms were evaluated
by how well their identified set of features fit 1 of overall 19 labels
(from which 8 of 19 were predicted), making a 0.3 correlation
coefficient sound less exemplary. Besides, it seems spurious that
DREAM challenges feature no shared conditions regarding the
success of their miscellaneous contests, risking methodological
arbitrariness among their ML competitions.

Criticism directed at the 2017 study involves five substantial
concerns:3

First is the weakness of the internal logic of the descriptors
and their selection:

Some are quite specific (garlic), other very broad (spices),
and still others are ambiguous (chemical). What are we to
make of “bakery” as a smell? Is it yeasty like baking bread?
Is it the smell of fresh cinnamon buns? (. . .) The problem
here is that words that are useful in an olfactory lexicon occur
at different levels of cognitive categorization (Gilbert, 2017;
added emphasis).

Linguistic descriptors are not representations of perceptions,
and verbal descriptors do not directly account for sensory
features. Without a psychophysical theory, the perceptual
space and its characteristics remains opaque. In this context,
the use of a linear set of descriptors in this and similar
studies contains several misconceptions. Most stimuli carry
ambiguous odors such that one odorant (i) contains multiple
qualitative notes and (ii) can fall under various semantic
categories (Barwich, 2020a). Ethyl citronellyl oxalate, for
example, is musky and fruity. And the odor of butyric
acid can fall under the label vomity and cheesy. ML-studies
gloss over the inherent ambiguity of semantic tags in odor
perception. Moreover, if ML algorithms can sieve through
thousands of molecular parameters, should they not also
be able to build an associated non-linear model of sensory
concepts—addressing a hierarchical classification of sensory
descriptors? (Say, “orange” and “lemon” falling under “citrus”
which is “fruity.”) Overall, the adequacy of verbal descriptors
for the causal analysis of the stimulus is questionable: “In
1988, Chastrette et al. (1988) (1) studied a collection of
2,500 odor descriptions (2) and concluded that only 3% of
the descriptors led to a fruitful odor-structure relationship”
(Poivet et al., 2018).

The second criticism, which links to the above, concerns the
tacit assumption that SORs are innate. However, human odor
perception, including its verbal labeling, is heavily influenced by
experience, context, and culture (Herz and von Clef, 2001; Majid
and Burenhult, 2014; Barwich, 2020a). Notably, even in mice we

3 We are immensely grateful to all three reviewers for their
extraordinarily helpful suggestions in systematizing and expanding these
points of criticism.
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FIGURE 3

Keller et al.’s (2017) experimental design.

find that the responses to seemingly “innate” odors are affected
by context and can be altered (Qiu et al., 2021a,b).

Third is the limited generalizability of tested substances and
descriptors:

if one wants to predict what molecules might smell of
sandalwood or citrus, one would have to retest all 476
molecules on another forty-nine sensory panelists using the
new list of descriptors, then rerun the computer models on
the new data set (Gilbert, 2017; added emphasis).

More than prediction in the strong sense, these algorithms
performed a classificatory function. Compared with the periodic
table of elements, facilitating predictions about the existence of
hitherto unknown elements (Scerri, 2019), the “soft predictive
power” of these ML-algorithms remained confined to existing
data. To be genuinely predictive, these algorithms need to fulfill
stronger philosophical criteria (Barrett and Stanford, 2004).
Predictions involve the discovery of ‘new’ data, and new means
that the findings of a model must not be entailed by existing
data. The 2017 finding that molecules with sulfur atoms tend to
smell sulfurous, therefore, is not a new discovery given existing
knowledge. Instead, it retracks and confirms correlations in
existing data. Further, predictions are often formulated as
implications or entailments of a scientific theory or model. But
there is no model explicated on the basis of these algorithms.
Additionally, only a couple of findings from these algorithms
were translated into predictive rules (if property P1 then effect

E1)—or quasi-predictive, as they expressed approximations. For
example: “[t]he presence of sulfur atoms makes things more
likely to smell burnt or garlicky. Bigger molecules are more likely
to smell pleasant” (Yong, 2016; added emphasis).

Exceptions to these algorithmic (chemical) correspondence
rules may be seen to exemplify the known issue of irregularities
in structure-odor-modeling, and are presented almost as
a built-in feature of the olfactory system (i.e., it’s not a
regular system anyway because biology messes with ideas
of lawful regularity). But what if these “irregularities” are
consequences of a false modeling premise, given that there is
a complete biological model missing in those explanations?
We suggest such irregularities appear only if you start
with the principles of chemistry. They may not constitute
irregularities and cease to be exceptions in biological
models of the stimulus. Indeed, this connects with the
following criticism.

Fourth are the biological variables that causally
account for known perceptual variations in response to
the chemical stimulus.

One example here is the polymorphism of cell receptors,
where a single interface (odor receptor) can respond to
numerous variables (odorants) and produce multiple different
response types (odors). An example are mixed responses to
androstenone, which individuals perceive quite differently as
urinous, sweaty, woody, or fruity (Wysocki and Beauchamp,
1984). Such high perceptual variation has been linked to
receptor polymorphism (Keller et al., 2007).
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Another example is receptor tuning which does not
correspond neatly with sets of chemical similarities (studied
with glomeruli: Soucy et al., 2009; Ma et al., 2012). Widespread
variation in tuning ranges appears to be an intrinsic property
of mammalian odor receptors (Kepchia et al., 2017). A critical
consequence of this non-overlap of chemical properties in
receptor-tuning profiles is that activation patterns in the
olfactory bulb do not allow for a chemotopic mapping
of chemical properties with glomeruli (Barwich, 2020a, Ch.
7), having significant implications for models of central
processing and perception.

Moreover, odorants do not reach the receptors unmediated
but interact with enzymes in the olfactory mucosa. These
perireceptor events can alter the odorant’s composition and
thus result in altered compounds with a different response
(Nagashima and Touhara, 2010; Heydel et al., 2013; Asakawa
et al., 2017).

Further, once we examine mixture perception, odorants
exhibit multiple functional roles and causal profiles in receptor
interactions. For example (Kurian et al., 2021), odorants are
“acting on receptors as agonists, antagonists, inverse agonists,
partial agonists, and even have a synergistic effect (Reddy et al.,
2018; Ikegami et al., 2020; Inagaki et al., 2020; McClintock et al.,
2020; Pfister et al., 2020; Xu et al., 2020; Zak et al., 2020).”

Finally, a fifth criticism is methodological and concerns
the linearity in current ML-models of SORs. The non-linearity
of receptor responses to odorants in contrast with the linear
modeling in current computational approaches to SORs may
account (at least partially) for the latter’s present inadequacies.

Overall, and to tie this section together, current
computational approaches for the prediction of SORs all
build on the starting assumption of a direct correspondence
between odorants (the stimulus causing the smell, characterized
by organic chemistry) and psychodescriptive labels. Such
models only study chemical properties in their correlations to
assigned verbal labels.

ML-models of SORs give a descriptive account of chemical
similarities from the specific perspective of organic chemistry.
But they cannot provide justification for the belief that these
features are causally relevant. Thus, correlations expressed
by these models provide leads for a hypothesis and not
an explanation of why and how these features are causally
active. With experiments following the logic of research
question Q1 (section “Deep nose and the logic of research
questions: theory in machine learning studies in olfaction”),
we have no way of knowing whether their findings account
for how the system processes and codes smells, not even at the
periphery. In turn, we cannot claim to have arrived at a model
connecting the perceived qualities to molecules biologically.
However, that is what determines the causality of the features
of the stimulus.

We think the omission of biology in current ML-models in
olfaction is profoundly mistaken. Moreover, we caution about
the logic of the research question Q1 implicit in these models:

it does not constitute a benign research program because it
works on misleading assumptions about what is truly causal
and explanatory.

In our view, the absence of causal considerations and focus
on semantic labels is problematic, no matter how predictive
of SORs similarly designed ML-models may be in the future.
Chemoinformatic properties of (i) single molecules (ii) in
isolation have little bearing on understanding the real-world
mechanisms of odor perception. Humans smell plumes of
multiple compounds where the sensory system can distinguish
between target and background odors. Notably, the same
“odor object” (meaning the assignment of semantic object
labels to a sensory quality, e.g., rose) can refer to mixtures of
varying molecular composition. – Meanwhile, receptor-centered
emphasis in this paper must not lead to the misleading
impression that models of perception can be inferred directly
from receptor-response models instead of SORs. Central to odor
coding are delicate circuitry and developmental processes in the
olfactory bulb (Cleland and Sethupathy, 2006; Maresh et al.,
2008) and recent discoveries such as representational drift in
piriform (Schoonover et al., 2021), which further question SORs
models (Barwich, 2020a).

Historically, it made a great deal of sense that chemical
notions of the stimulus took over olfactory research throughout
the twentieth century. We question whether it continues to be
an apt modeling strategy today. Because if the research problem
is misconceived, it matters little if you are using a new tool to
accelerate its application.

Biology makes scents of chemistry:
Receptor-response models of the
stimulus

Is there sufficient reason to think that knowledge of
receptors and their behavior may change our understanding
of odor coding? Indeed, there is (Barwich, 2020a, 2021,
forthcoming). A chief reason for consulting the biology of the
system in models and explanations of the olfactory stimulus
concerns the fact that, as of recently, we could not even predict
whether a molecule has a smell at all:

it is nearly impossible to predict whether a given molecule
will be odorous and what its odor quality might be from
the chemical structure alone. Although all odor molecules
are typically organic compounds of low molecular weight,
they may be aliphatic or aromatic, may be saturated or
unsaturated, and may have any of several polar functional
groups. However, there are many molecules that conform
to those characteristics, which are nonetheless odorless, to
humans and other animals (Poivet et al., 2018).

In response to this challenge, Mayhew et al. (2022; added
emphasis) reported that their computational model identified
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features that might help explain and predict which molecules
are odorous: “We found that molecules with sufficient volatility
and hydrophobicity are generally odorous, which suggests
that reaching olfactory receptors is the dominant barrier for
prospective olfactory stimuli.” The causally significant stimulus
properties were features involved in the various biological
processes involved in binding the stimulus with the receptors.
More simply: biology determined the modeling of chemistry
(Gerkin and Mainland were involved in this study).

This example (Mayhew et al., 2022) illustrates why the issue
in our view is not the general application of computational
tools such as ML in olfaction. As mentioned earlier, our
critique targets the adequacy of the central assumptions
hidden in the currently predominant use of machine learning
models in olfaction. Once its assumptions are made explicit,
using LRQ as in this article, ML offers a tremendous
technique to derive possible leads that act as a heuristic
for future research into correlations that may be causal
in nature. Testing of these correlations as causal, however,
requires (i) empirical follow-ups and experiments, and (ii)
a model of a causal mechanism in which such structural
correlations provide causal explanations (Barwich, 2021). The
results of ML thus aid scientific hypothesis generation and
modeling but do not constitute evidence independent of theory
and wet-lab experiment. ML thus conceived carries great
potential to highlight certain chemical features to be tested
against the receptors.

Still, skeptics may raise the question: why should we start
with receptor responses in modeling the chemical stimulus
of smell? This question carries appeal with the case of
Mayhew et al. (2022), suggesting that we could arrive at
features relevant to receptor responses. We consider this
optimism misguided, though. First, it presents a mistake
in terms of quantificational logic: it makes an illegitimate
inductive inference by claiming an “all” quantifier with
the case of a “some” quantifier. Second, beyond logical
fallacy, there is sufficient empirical evidence in support
of our argument.

We shall highlight two sibling-studies emphasizing
biological function over chemical form: Poivet et al. (2016,
2018) analyzed receptor responses to identify physico-chemical
features critical to (i) how the receptors bind an odorant and
(ii) which odorants are perceived as more similar than others.
Poivet et al. (2018), was set up explicitly in corrective contrast
with Keller et al. (2017):

One approach recently used to solve [the problem of odor
coding] was to apply machine learning strategies to a
large set of odors and human classifiers in an attempt to
find common and unique chemical features that would
predict a chemical’s odor. We use an alternative method

that relies more on the biological responses of olfactory
sensory neurons and then applies the principles of medicinal
chemistry, a technique widely used in drug discovery.

Poivet et al. first tested receptor responses to 6 ketones in
2016, followed by a study of receptor responses to 5 esters
and 1 ketone in 2018, via the activity of dissociated olfactory
cells with calcium imaging. (Olfactory neurons typically express
one receptor gene (Chess et al., 1994), and are widely used
as experimental substitutes for receptor binding studies in
olfaction.) All test odorants were chosen considering their
structural composition: each odorant had one slight difference
to a reference odorant in the study (Figure 4, left). For example:
“In the case of the esters used here, the position of the ether
oxygen and the lengths of the carbon chain on either side of
the ether oxygen or the carbonyl group were varied, and we
investigated the reverse esters of each compound—esters in
which the ether and carbonyl oxygens are transposed compared
to the original compound” (Poivet et al., 2018).

Poivet et al. compared the number of receptors co-
activated by these odorants before systematically checking for
the salient physico-chemical features in receptor-coactivating
odorants (Figure 4, right). This receptor-based classification of
odorant similarity was contrasted with a similarity tree derived
based on organic chemistry. Comparing these two similarity
dendrograms (Figure 5, left), they demonstrated that odorant
classifications yielded substantially different similarity trees
depending on whether one arranges odorants with the principles
of analytic chemistry or receptor responses in medicinal
chemistry.

This work revealed two key findings. First, it showed
that the categorization of the same class of odorants (here:
ketones and esters) diverged substantially between the two causal
strategies (stimulus-centered versus receptor-centered). Second,
receptor-based modeling highlighted fundamentally different
physicochemical features as the causally relevant ones (Figure 5,
right). Possibly the most surprising and striking discovery was
that a key causal features of ketones (correlated with odorant co-
detection by receptors) was the Topological Polar Surface Area
(TPSA; Figure 4), a feature playing little role in chemistry-based
classifications.

But what about behavior? An advantage of Keller et al.
(2017) was their inclusion of a new human psychophysical
dataset. Poivet et al.’s (2016, 2018) studies used disassociated
cells from genetically engineered mice. Could these mice also
distinguish these odors to different degrees? In response,
Poivet et al. (2016) undertook (dis)habituation tests with
mice: “Habituation is defined by a progressive decrease in
olfactory investigation toward repeated presentation of the same
odor stimulus. Dishabituation is defined by reinstatement of
olfactory investigation when a novel odor is presented.” Indeed,
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FIGURE 4

Left: Structural comparison of the 3 esters (Poivet et al., 2018). Right [top: TPSA rule (Poivet et al., 2016)]; bottom: 2 examples of receptor
co-activation in ketone pairs (Poivet et al., 2018).

FIGURE 5

Classification of odorant similarity according to analytic and medicinal chemistry. Illustrated is the difference between the classification of the
chemical similarity of ketones (left) according to (A) the principles of analytic chemistry and (B) medicinal chemistry and receptor behavior
[image from Poivet et al. (2016); OSN stands for Olfactory Sensory Neurons]. Differences are especially visible when comparing the closest
similarity pairs in (A) analytic chemistry {4; 6} and (B) medicinal chemistry {1; 2}. These differences are grounded in varying ordering criteria of
chemical similarity between chemistry and medicinal chemistry [example right; (C)] [Note: Sample molecules in panel (C) are not ketones but
chosen merely for an illustration of the selection criteria].

mice demonstrated (i) reciprocal habituation to odorants that
co-activated the same receptors and (ii) dishabituation to
odors dissimilar according to receptor responses (i.e., less co-
activation), illustrating that OSN response patterns are a better
predictor of odor behavior than chemistry.

Yet what about humans? Poivet et al. (2018) tested the
different esters and asked a small panel of participants to rank
them. Results were interesting. On the one hand, humans
behaved like the mice: they “perceive the medial esters [5]
and [6] to be the most similar.” On the other hand, we find
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differences: “unlike mice, [participants] classified them as closer
to [2] than to [3]. Humans also clustered [1] with [3] rather than
[2].” Additionally, humans showed a higher variety in similarity
responses than the mice. Contrary to intuition, this favors
biology-centric modeling because the human olfactory system
is genetically highly diverse, resulting in receptor-response
differences that have been linked to perceptual variation
(Mainland et al., 2014; Trimmer et al., 2019). In comparison,
mice are genetically homogeneous model organisms (Ankeny
and Leonelli, 2020), and would show less variation in behavioral
responses to odorants.

Further, can receptor-based models arrive at structure-
activity rules and, if so, how predictive are such rules? The appeal
of Keller et al. (2017) was their claim that ML-models may lead
to SORs with predictive value. Yet, we also find receptor-based
response rules with predictive value for odorant similarity.

Poivet et al. (2016) elaborated on the possibility of
deriving structure-activity rules from receptor co-activation. For
example, they posited the “TPSA-transferability rule” stating
that: if a receptor (group) is co-activated by an odorant with
a TPSA value [1] and an odorant with increased TPSA value
[3], then this receptor (group) will also be activated by an
odorant with an intermediate TPSA value [2]. They further
tested whether this rule applied to ketones beyond the test
panel. It did. Such findings constitute discoveries of new
data not previously entailed in the datasets and model. In
this context, one final blow to the lingering skeptic is that
receptor responses markedly question our established chemical
definitions of odorant classes:

we find that there is a strong relation between esters
and ketones that is not predicted by chemical analyses.
This unexpected result led us to theorize that the critical
feature of ester molecule discrimination is not the ester
group but rather the position of the carbonyl group
(Poivet et al., 2018).

Lastly, how experimentally productive and expandable is
medicinal chemistry as a research program? Recently, Burton
et al. (2022) tested activation in the bulb to 185 odorants and
analyzed stimulus similarity patterns with medicinal chemistry.
Instead of traditionally received chemical spaces, this study
mapped “response spectra” of glomeruli according to receptor
sensitivity and tuning. Sometimes old problems need not new
tools but a new perspective.

Inevitably, biology-based studies are comparatively small
in scope and more localized in their probing of causal details
when compared with big ML-studies. A better understanding
of odor coding and causality must build on an approach that
iteratively combines these tools, ML-studies with receptor-based
modeling, to test the rules at which they, respectively, arrive.
Hence, we suggest adding the utility of computational tools to
question Q2 and its research program. Rather than denying the

obvious potential of the tool, we simply advocate for a different
causal grounding of it to discover more about the molecular
basis of olfaction.

Meanwhile, first results of computational approaches
to receptor-response models of the stimulus are emerging.
But this research does not provide transparent answers by
magic. While receptor-based ML-approaches show notably
higher correlation results (sometimes up to ∼70%), some
of these studies also delivered non-overlapping clusters
of chemical features in direct comparison. The reasons
behind such divergence appear methodological. As proof-of-
principle, Haddad et al. (2008a) tuned a bioelectronic nose
to the receptive range of the de-orphanized rat receptor I7
(Zhao et al., 1998; Araneda et al., 2000), thus extrapolating
chemical features based on the response activity of a single
receptor. They further applied this set-up to 24 drosophila
receptors. Meanwhile, Haddad et al. (2008b) began with a
multidimensional metric re-applied via meta-analysis to 9
datasets from previous studies. In contrast, Saito et al. (2009)
heterologously expressed 464 receptors, and functionally tested
93 odorants yielding an agonistic profile for 52 mouse and
10 human receptors—extrapolating chemical features based
on the response profiles of multiple and genetically diverse
receptors. While Saito et al. began with data production from
wet-lab research, Haddad et al. began with computationally
derived parameters compared against existing wet-lab datasets.
Thus, meaningful metrics comparing and measuring the
success of such hybrid modeling requires closer analysis
concerning (i) their varying methodological and (ii) assumed
biological conditions.

Overall, receptor-based models provide significant
empirical reasons to caution against the notion of taking
ML-models as revealing causal features without a systems-
theoretic background. From this complementary perspective,
receptor-based studies yield ontological priority and do
not take a backseat since (i) chemical similarity modeled
in isolation cannot account for receptor-coactivation
and (ii) datasets with chemical diversity need not
reflect biological response diversity. With this approach,
biological-response accounts are not used to explain
anomalies, as in previous chemistry-based accounts,
and, instead, are the very basis of the causal theory
used in explanation.

Conclusion

This article analyzed the patterns of inference and
explanation in ML-models applied to olfaction. We saw that
the logic of research questions in chemistry-based models of
the stimulus in prominent computational approaches markedly
differs from biology-based modeling in wet-lab research (section
“Deep nose and the logic of research questions: theory in
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machine learning studies in olfaction”). Specifically, we assessed
two sets of research questions, each with distinct possible and
responsive answers: one, Q1, is mostly chemical and building
on a research tradition from the twentieth-century before the
olfactory receptor discovery; and the other, Q2, which has
been coming into experimental focus only very recently, is
mostly biological. We argued that a biology-centered approach
with its associated research question Q2 ultimately yields the
answers that we seek in understanding the coding principles
of the olfactory system. In addition to logical differences, we
evaluated the available empirical evidence of the leading studies
representative of each approach (section “Analysis: chemistry-
based versus receptor-response models”). In this context, we
find that receptor-response studies widen our possibilities
in explaining odor coding concerning definitions of odorant
similarity and their connections with perceptual behavior.

Our general critique from the argument in this article is that
if we continue using the chemistry-based approach, then we
also continue building models of olfaction on a fundamentally
mistaken notion of odor coding as a sensory process. Theorizing
about perception routinely presents the following story: the
brain extrapolates information via an efficient feature extraction
process by filtering general information from contingent
scenarios (Marr, 1982). But what are the truly significant bits?
And how does the sensory system represent those: is it according
to the currently dominant chemistry-based or a biology-based
model of smell? This line of question is considered irrelevant for
many ML-approaches to smell (Wiltschko, 2019; section “Deep
nose and the logic of research questions: theory in machine
learning studies in olfaction”). But they are not, as we just
showed: we get different answers, depending on which research
question and theoretical basis we use.

Ultimately, we suggest that a combinatorial approach of
biologically informed machine learning appears to present
the most fruitful program for future research. We therefore
hope the future brings greater attention, science-journalism
appeal, and funding to research into the biology of the system.
Unfortunately, receptor-response studies are underfunded and
far less easy to “just throw out there” in comparison with
ML-approaches drawing on existing datasets. Meanwhile,
obstacles for the successful acquisition of receptor datasets
remain. For example, (1) we do not have the crystal structure
of the mammalian odor receptors; (2) not all receptors
are de-orphanized (Peterlin et al., 2014), meaning their
ligand binding range remains unknown. These gaps in our
present knowledge carry consequences for causal models of
receptor biology and stimulus interactions. Without crystal
structures, detailed insight and comparisons of the molecular
architecture of receptors remain limited. Additionally,
functional understanding of the range and variety of odorants to
which a receptor can bind requires systematic de-orphanization.

As long as localized receptor studies are sidelined in favor
of quick and dirty ML-studies, we won’t be able to evaluate
which chemical features are functionally (that is, biologically
and operationally) involved in receptor co-activation—further
allowing for inferences to functional rules to be used in ML-
studies. That said, critical breakthroughs in research on odor
receptor function and coding mechanisms—often with the
introduction of new experimental tools—were seen to emerge
in the past couple of years (Kurian et al., 2021).

In the end, to make machine learning modeling truly
informative, more wet-lab and bench-work (meaning tissue
studies on the receptors in empirical laboratory settings) is
needed, as AI cannot give you that kind of data.
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